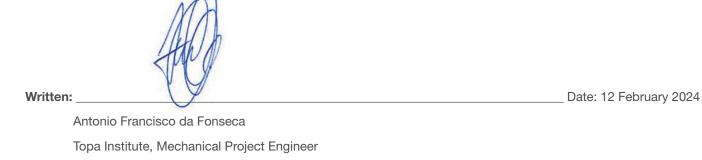
Transport Simulation Test Report

Single-Use Shipper with 20 X 20 L CryoVault® Containers



Index

1. Approval Signatures	03
2. Test Overview	04
2.1 Objective	04
2.2 Test Results	04
2.3 Conclusions	04
2.4 Recommendations	04
3. Test Product	
4. Test Procedure	06
4.1 Pre-Test Inspection	06
4.2 Preconditioning & Packing	06
4.3 Rotational Corner Drop Test (Method B)	06
4.4 Rotational Flat Drop Test (Method C)	07
4.5 Random Vibration Test	07
4.6 Rotational Corner Drop Test (Method B)	
4.7 Rotational Flat Drop Test (Method C)	80
4.8 Post-Test Inspection	80
5. Test Results	09
5.1 Pre-Test Inspection	09
5.2 Preconditioning & Packing	09
5.3 Rotational Corner Drop Test (Method B)	09
5.4 Rotational Flat Drop Test (Method C)	09
5.5 Random Vibration Test	10
5.6 Rotational Corner Drop Test (Method B)	10
5.7 Rotational Flat Drop Test (Method C)	10
5.8 Post-Test Inspection	10
Appendix A: Applied Testing Equipment	12
Appendix B: Random Vibration Test Graphs	33
Annendix C: History of Change	30

Approval Signatures

Verified: Date: 12 February 2024

Wout Adriaanse

Topa Institute, Thermal Project Coordinator

Date: 12 February 2024

Report number: T23-1239

Revision: 0

Research Date: 26 January 2024

Test Facility: Topa Thermal **Customer:** Topa Thermal

> Torenlaan 10 2215 RW Voorhout

The Netherlands The Netherlands

This report details the methods, specifications and results for the transport Abstract:

simulation of Single-Use Shipper with 20 x 20 L CryoVault® containers.

Torenlaan 10

2215 RW Voorhout

2. Test Overview

2.1 Objective

The objective of this test is to investigate the influence of worldwide pallet transport on the Single-Use Shipper with 20 x 20 L CryoVault® containers.

2.2 Test Results

The Single-Use Shipper with 20 x 20 L CryoVault® containers has been tested with the following results:

Test	Results
Preconditioning & Packing	No remarks
Rotational Corner Drop	No remarks
Rotational Flat Drop	No remarks
Random Vibration	No remarks
Rotational Corner Drop	No remarks
Rotational Flat Drop	No remarks

2.3 Conclusions

No visual damage to the outside of the pallet load or on the CryoVault® containers. The Single-Use Shipper with 20 x 20 L CryoVault® containers is suitable for worldwide pallet transport.

2.4 Recommendations

Corrugated cardboard has a lower tolerance for humidity than plastic. Replacing the current CryoVault® handling box from corrugated cardboard to 3 mm corrugated plastic will improve the performance of the handling box.

3. Test Product

The test product consists of:

Insulated Container

One fully conditioned KCVS-DS0001A Description:

1,570 x 1,100 x 1,610 mm Dimensions:

Weight: 360.0 kg (including dry ice)

The KCVS-DS0001A will contain the following product load:

Product Load

Description: One pallet load containing

20 CryoVault® containers.

Dimensions: 1,200 x 800 x 1,280 mm

Weight: 151.0 kg

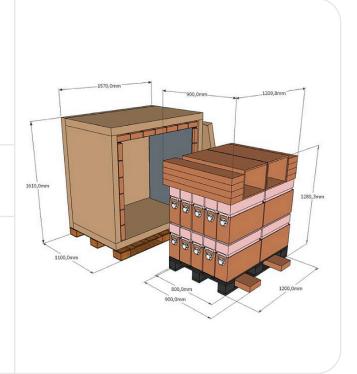


Figure 1: Fully packed GTS-1150L4D-DI container

4. Test Procedure

The testing procedure, according ASTM D4169-22, Distribution Cycle 2, consists of the following parts:

4.1 Pre-Test Inspection

Before the start of the test, the bags, components, and the insulated containers are inspected by an engineer from Topa Institute. Any damage or irregularities are noted. All faces of the test pallet are identified according to Figure 2, where Face 5 is one of the smallest vertical faces of the pallet.

4.2 Preconditioning & Packing

The CryoVault® containers are conditioned at -80 °C for at least 72 hours prior to packing. Once the CryoVault® containers are conditioned, a pallet load of 20 CryoVault® containers are built and placed inside the container before the start of the test.

4.3 Rotational Corner Drop Test (Method B)

A rotational corner drop test is conducted with a loaded pallet. Four drops are conducted; one drop on each corner of the pallet. The opposite corner of the corner on which the pallet is dropped is supported by a 100 mm thick piece of timber.

The drop height depends on the weight of the pallet. This test is based on ASTM D4169-22 and D6179-07 (Assurance Level II, Method B).

Figure 2: Conditioning setup

Pallet Weight	Assurance Level I	Assurance Level II	Assurance Level III
0 to 226.8 kg	305 mm	229 mm	152 mm
226.8 kg and up	229 mm	152 mm	76 mm

Table: Drop Heights

Figure 3: Rotational Corner Drop setup

Figure 4: Rotational Flat Drop Test

4.4 Rotational Flat Drop Test (Method C)

A rotational flat drop test is conducted with a loaded pallet. Two drops are conducted; one drop on the handling side of the pallet and one drop on the opposite side of the pallet. If the pallet can be handled in all directions, a flat drop on all four sides is conducted. The drop height depends on the weight of the pallet. This test is based on ASTM D4169-22 and D6179-07 (Assurance Level II, Method C).

Pallet Weight	Assurance Level I	Assurance Level II	Assurance Level III
0 to 226.8 kg	305 mm	229 mm	152 mm
226.8 kg and up	229 mm	152 mm	76 mm

Table: Drop Heights

4.5 Random Vibration Test

4.5.1 Truck Transport

In order to simulate vibrations during truck transport, a random vibration test is conducted. Three test profiles from ASTM D4169-22 and D4728-17 are used with a frequency range from 1 Hz to 200 Hz and average loads of 0.40 Grms for 40 minutes, 0.54 Grms for 15 minutes, and 0.70 Grms for 5 minutes. The entire test lasts 60 minutes.

	Truck Low Level	Truck Medium Level	Truck High Level
Average Load	0.40 Grms	0.54 Grms	0.70 Grms
Test Duration	40 minutes	15 minutes	5 minutes

Table: Random Truck Vibration Test Distribution

Figure 5: Random Vibration Test setup

4.5.2 Air Transport

In order to simulate vibrations during air transport, a random vibration test is conducted. Three test profiles from ASTM D4169-22 and D4728-17 are used with a frequency range from 1 Hz to 200 Hz and average loads of 0.16 Grms for 27 minutes, 0.22 Grms for 10 minutes, and 0.29 Grms for 3 minutes. This sequence is repeated three times. The entire test lasts 120 minutes.

	Air Low Level	Air Medium Level	Air High Level
Average load	0.16 Grms	0.22 Grms	0.29 Grms
Test duration	27 minutes (3x)	10 minutes (3x)	3 minutes (3x)

Table: Random Air Vibration Test Distribution

4.6 Rotational Corner Drop Test (Method B)

A rotational corner drop test is conducted with a loaded pallet. Four drops are conducted; one drop on each corner of the pallet. The opposite corner of the corner on which the pallet is dropped is supported by a 100 mm thick piece of timber. The drop height depends on the weight of the pallet. This test is based on ASTM D4169-22 and D6179-07 (Assurance Level II, Method B).

Pallet Weight	Assurance Level I	Assurance Level II	Assurance Level III
0 to 226.8 kg	305 mm	229 mm	152 mm
226.8 kg and up	229 mm	152 mm	76 mm

Table: Drop heights

4.7 Rotational Flat Drop Test (Method C)

A rotational flat drop test is conducted with a loaded pallet. Two drops are conducted; one drop on the handling side of the pallet and one drop on the opposite side of the pallet. If the pallet can be handled in all directions, a flat drop on all four sides is conducted. The drop height depends on the weight of the pallet. This test is based on ASTM D4169-22 and D6179-07 (Assurance Level II, Method C).

Pallet Weight	Assurance Level I	Assurance Level II	Assurance Level III
0 to 226.8 kg	305 mm	229 mm	152 mm
226.8 kg and up	229 mm	152 mm	76 mm

Table: Drop Heights

4.8 Post-Test Inspection

After all tests are performed, the bags, components, and the insulated containers are inspected by an engineer from Topa Institute. Any damage or irregularities are noted.

5. Test results

5.1 Pre-Test Inspection

Before the tests are performed, the outside of the pallet load is visually inspected by an engineer from Topa Institute.

Observations:

No remarks.

5.2 Preconditioning & Packing

The CryoVault® containers are conditioned at -80 °C for at least 72 hours prior to packing.

Observations:

No remarks.

Figures 6 to 9: Packing

5.3 Rotational Corner Drop Test (Method B)

Weight: Product/Packaging Combination	511.0 kg
Drop Height	152 mm
Faces Tested	5, 2, 6, and 4

Table: Rotational Corner Drop Test

Observations:

No remarks.

5.4 Rotational Flat Drop Test (Method C)

Weight: Product/Packaging Combination	511.0 kg
Drop Height	152 mm
Faces Tested	5, 2, 6, and 4

Table: Rotational Corner Drop Test

Observations:

No remarks.

5.5 Random Vibration Test

	Truck Low Level	Truck Medium Level	Truck High Level
Average Load	0.40 Grms	0.54 Grms	0.70 Grms
Test Duration	40 minutes	15 minutes	5 minutes

Table: Random Truck Vibration Test Distribution Results

	Air Low Level	Air Medium Level	Air High Level
Average Load	0.16 Grms	0.22 Grms	0.29 Grms
Test Duration	27 minutes (3x)	10 minutes (3x)	3 minutes (3x)

Table: Random Air Vibration Test Distribution Results

Results graphs for the random vibration tests can be found in Appendix B.

Observations:

No remarks.

5.6 Rotational Corner Drop Test (Method B)

Weight: Product/Packaging Combination	511.0 kg
Drop Height	152 mm
Faces Tested	5, 2, 6 and 4

Table: Rotational Corner Drop Test Results

Observations:

No remarks.

5.7 Rotational Flat Drop Test (Method C)

Weight: Product/Packaging Combination	511.0 kg
Drop Height	152 mm
Faces Tested	5, 2, 6 and 4

Table: Rotational Flat Drop Test Results

Observations:

No remarks.

5.8 Post-Test Inspection

After all tests are performed, the test product is thawed at lab conditions and is visually inspected with the following results:

Observations:

No visual damage to the outside of the pallet load.

No damage is found on the CryoVault® containers.

Figures 10 and 11: Pallet load after testing

The Topa Institute for packaging and distribution is emphasizing its activities on research and the optimization of products and packaging in their performance during their actual lifetime and distribution. Concerning advice and research, the Topa Institute for packaging and distribution is independent from any company, institute, or organization.

Responsibility

The Topa Institute for packaging and distribution or people acting in research activities are not responsible for damage sustained after use of results of esearch activities.

Appendix A: Applied Testing Equipment

1. Vibration Test System

Manufacturer: Lansmont Model 10000 TTV II

• Maximum size: 152 x 152 cm

Maximum specimen weight: 1,100 kg

Maximum amplitude (peak to peak):

• Frequency range: 1 - 300 Hz

Frequency range at maximum load:
 1 - 200 Hz

Acceleration range:
 0 - 8 g

Maximum acceleration at maximum load:
 0.77 g

Automatic displacement or acceleration control

 Automatic sweep generator and random vibration facilities (Lansmont TouchTest Vibration system)

Accelerometer

Calibration due date:

June 2024

Paletsingel 2 2718 NT Zoetermeer Telefoon: +31 (0)85 8228 850 E-mail info@sonorkalibratie.nl KvK nr.:82433607

Certificate of Calibration

Certificate number: TC-6013-6

Applicant **Topa Instituut** Name:

Address: Torenlaan 10

2215 RW Voorhout

Shaker System Manufacturer: Lansmont Model 10000 TTV2

Serial number M-15356 Customer ID nr

Kistler Ref transducer Manufacturer:

Model 8704B100 Serial number 2097568

Customer ID nr

Calibration method:

The calibration was performed on site. A reference accelerometer is attached near to the center of the table and the values are compared to the display read out values of the system. Overall values are measured and FFT spectra taken

Uncertainties:

The uncertainties were calculated in accordance with EA-4/02: Expression of Uncertainty of Measurement in Calibration, A coverage factor of 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95%. Uncertainty 5 %

Traceability:

The measurements have been executed using standards traceable to (inter)natonal standards. Supporting documentation relative to traceability is on file and is available on request

Environmental conditions:

Air pressure hPa Temperature °C Relative humidity %

Date of Receipt At location in Voorhout

Date of Calibration: 15 juni 2023 Date of Certificate: 15 juni 2023

Authorized Signatory: Calibration Manager

Certificate nr.: TC-6013-6 Page 1 of 4

Visual Inspection Results

Connectors Housing mechanics

Reference transducer fixing Wax and cable protectors

The input is generated by applying several known profiles
The values are then compared with a calibrated accelerometer output. Profiles are measured from 1 Hz to 1 kHz as Overall value
If the significant frequency is known then measured with a FFT analyser from 0 - 500 Hz with a 0,625 Hz bandwith.

Calibration profile : ASTM D 4169-09 rail level III

Ref value	Displayed value LANSMONT	Deviation	Unit
0,209	0,204	-0,005	g RMS

Calibration profile: ASTM D 4169-09 truck level II

Ref value	Displayed value LANSMONT	Deviation	Unit
0,528	0,521	-0,007	g RMS

Calibration profile: ASTM D 4169-09 air level I

Ref value	Displayed value LANSMONT	Deviation	Unit
1,538	1,510	-0,028	g RMS

Calibration profile: ASTM D 4169-09 air low 2022

R	ef value	Displayed value LANSMONT	Deviation	Unit
	0,163	0,157	-0,006	g RMS

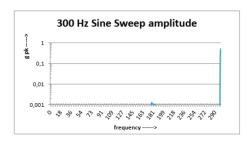
Calibration profile: ISTA 3 A Pickup and delivery

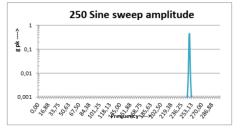
Ref value	Displayed value LANSMONT	Deviation	Unit
0,460	0,458	-0,002	g RMS

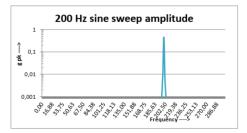
Calibration profile: 1 " loose load test

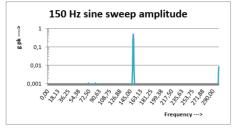
4	h	1Z

Ref value 4Hz	Displayed value LANSMONT	Deviation	Unit
0,730	0,820	0,090	g pk

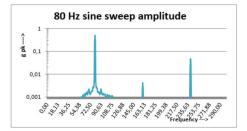

Certificate nr.: TC-6013-6 Page 2 of 4

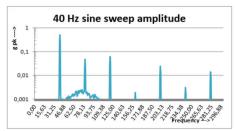


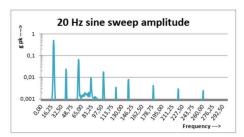

Calibration profile : Sine Sweep 3 - 300 Hz

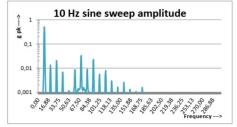

Frequency in Hz	Ref value Displayed value in LANSMONT g pk in g pk		Deviation in g pk
5	0,533	0,500	-0,033
10	0,510	0,500	-0,010
20,1	0,501	0,500	-0,001
40,2	0,507	0,500	-0,007
80	0,504	0,500	-0,004
150,1	0,496	0,500	0,004
199,7	0,514	0,500	-0,014
250	0,513	0,500	-0,013
300	0,504	0,500	-0,004

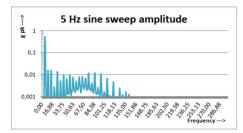
With $g = 9,80665 \text{ m/s}^2$

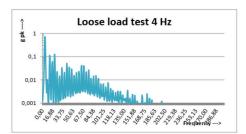







Certificate nr.: TC-6013-6 Page 3 of 4





Certificate nr.: TC-6013-6 Page 4 of 4

2. Pulley Block

Manufacturer:

Lifting capacity:

• Hoisting velocity:

Year of construction:

Inspection due date:

Demag

1,250 kg

4 m/min or 2 m/min

2005

April 2024

V	MENNENS Amsterdam	020-5811811
	MENNENS Dongen	0162-383800
	MENNENS Groningen	050-3183031
	MENNENS Hengelo	074-2503504
	MENNENS Rotterdam	010-4373033

EKH Keuringsrapport: TGT 290323 02

Opdrachtgever	Topa Verpakking bv	Werktuignummer	Kraan 1	Kraan 1					
Adres	Torenlaan 10	Bouwjaar	01-01-2005						
Plaats	2215 RW Voorhout	Capaciteit	1.250 kg					2 P	
Opdrachtnummer	760628	Hijshoogte	3.0	3.0 mtr. FEM 1Cm Hoogste Hijssnelh. 4/				4/1	m/min.
Keuringsdatum	29 maart 2023	Locatie	Topa Institu	Topa Instituur					•

BASISGEGEVENS > FA	BRIKAAT / MERK	Snelheden	MODEL / TYPE	SERIENUMMER	Electr.	Lucht	Hydr	Hand	Duw	Haspel
Kraan	Demag		Katbalk INP180x7000							
Takel	Demag	2V	DKUN 5-630 K V1 F4	61655659	٧					
Loopkat	Demag		EU-RU 11 DK	61655659					٧	

100	ALGEMEEN	A	В	С	40	HIJSEN / VIEREN	T/	KEL	.1	TA	KEL 2	60	00 K	RAANRIJDEN	П	Α	В	С
101	Kraanboek aanwezig	T.					Α	В	С	Α	ВС	60)1 E	lektromotor	7	-	7	٦
102	Staalkabelcertificaat	-			40	Elektromotor	٧		7			60)2 K	oppeling		-		
103	Lastkettingcertificaat	-		1	40	Koppeling	-					60)3 R	emtrommel		-		
104	Lasthaakcertificaat	1 -			40	Remtrommel	-					60)4 R	emvoering (mr	m)	-		
105	Overzichtstekeningen	-		·	40	Remvoering (mm)	٧					60	05 R	emschijf (mi	m)	-		
106	Schema's	1			40	Remschijf (mm)	V					60	06 R	embeweging (slag mi	m)	-		
107	Berekening lastdragende delen	-	_		40	Rembeweging (slag mm)	V					60	07 W	/orm- / tandwielkasten		-		
108	Toegang voor onderhoud	V		-	40	Worm- / tandwielkasten	٧					60	08 0	pen tandwiel overbrenging		-	-	
109	Onderhouds- / bediening voorschriften	-		•••••	40	Open tandwiel overbrenging	-				·····	60	9 A	ssen en lagers		-		
110	EG-verklaring (CE)	1-		-	40	Assen en lagers	V					61	10 B	evestiging aandrijving		-	-	
111	Draaglast aanduiding	V	,		41		V					61		ulprembeweging of 2e rem		-		
112	Functietest beveiligingen	-			41	Hulprembeweging of 2e rem	-					61		popwielen / Rondsels		-		
113	Controle verlichting	-	-		41	Nestenschijf	v					70		LEKTRISCH GEDEELTE	_	А	В	С
	CONSTRUCTIE	A	В	С	41		-					70	_	oofdschakelaar	7	V		
201	Bevestiging kraanbaan	1	+	+	41							70		oofdstroomrail (open)				
202	Kraanbaan	1-	-	-	41		-					70		oker sleepleidingen		-		
203	Katbaan	v	,		41							70		abelkat installatie		v		
204	Speling loopvlak / wielflens	V			41	Lastketting (D 5.3 x 15.2 mm)	V					70		abelhaspel		i		
205	Portaal van de kraan		-		41		V					70		ekabeling		v		
206	Staanders (vaste bok)	-	-		41		V					70		abeldoorvoering / -wartels		Ť		
207	Hoofdligger en hulpligger	-			42		V					70		chakelkasten				
208	Wielkasten	-	-	-	42	Slipkoppeling	V	-				70		erdeelkasten				
209	Baan eindstoppen / Buffers	- V	,		42		V					71		tuurstroomgedeelte 400	····	-		
210	Zwenkarm en kolom	·	-	-	42		· ·	1	1			71		arding	·			
211	Draaikransen	-	-		42	mjshaak / Onderblok(1 mm)						71		/eerstanden				
212	Trappen en bordessen		-									71		angdrukknopkast		V		
213	Lasverbindingen		-		50	KATRIJDEN	10	OPKA	7.4	100	PKAT 2	71		raadloze besturing		<u> </u>		
	Bout- / penverbindingen	v	-		50	RATRISDEN	A	В	С	_	B C	71		koestische / optische signalering		-		
214	Uithouders	V			50	Elektromotor	А	В	-	^	ВС	********				-		
215		V	-		50	Elektromotor	-					71		astaanwijzingen		-		
216	Conservering BEVEILIGINGEN / VEILIGHEID	٠.	-		50	Koppeling						71		edrijfsurenteller : uur		-		_
		A	В	С	50							/1	18 b	eschermingsleiding (NEN 3140)				
301	Ontsporings- /opwip beveiliging (BL)				50		-						- T-	aantal metingen:		т		
302	Ontsporings- /opwip beveiliging (OH)	٧	_		50		-					/1	19 Jis	olatieweerstand (NEN 3140)		-1		
303	Stormverankering		-		50		-						т.	aantal metingen:		т		
304	Overlast beveiliging	-	1	14	50	Worm- / tandwielkasten	-						_	ardlekschakelaar (NEN 3140)	_	-	_	_
305	Beveiliging overbelastingsstroom				50	Open tandwiel overbrenging	-					80	_	abine	_	Α	В	С
306	Werk- / eindschakelaars hijsen	1	_		50		٧					80		onstructie		-		
307	Werk- / eindschakelaars katrijden				51		-					80		tandencontrollers		-		
308	Werk- / eindschakelaars kraanrijden	Ŀ	_		51	Hulprembeweging of 2e rem	-					80		erlichting Cabine		-		
309	Botsbeveiliging	-			51	Loopwielen / Rondsels	٧					80		erwarming / koeling cabine		-		
310	Zone- / inblokbeveiliging	ŀ										80		randblusmiddelen		-		
311	Noodstopvoorziening	V	1									80	06 V	luchtmiddelen / -mogelijkheden		-		

- A GEEN GEBREK
 B GEBREK RISICOKLASSE, ZIE BLAD Opm.
 C OPMERKING NUMMER, ZIE BLAD Opm.

000	afsluitende beoordeling	
001	hoogst gemeten risicoklasse	1
002	kraan vrijgegeven	Ja
003	kraan afgetest met proeflast	Ja
004	goedkeuringssticker geplakt	Ja
005	stickernummer:	

Naam keurmeester :	T. de Groot
Handtekening	
Naam contactpersoon :	
Handtekening	

423 Onderblok kan niet naar de grond i.v.m. aanwezig valklem in haak.
Mennens Groningen

BHS2021 rev.nr. 8 08-01-2015

Transport Simulation Test 2024 | 18

3. Pallet Truck With Weighing Scale

Manufacturer pallet truck:

Manufacturer weighing scale:

Range weighing scale:

• Record:

• Dimensions weighing platforms:

Year of construction:

Calibration due date:

Toyota BT Lifter LHM200SC

Ravas

0.0 – 2,000.0 Kg (± 0.1%)

Digital

1,190 x 540 mm

2019

April 2024

Kalibratiecertificaat nummer NL0008-101-041423-ACC-RVA

Mettler Toledo B.V.

Franklinstraat 5 4004 JK TIEL (NL) 0344-638363

Kalibratiecertificaat

Accuracy Calibration Certificate

Klant

Bedrijfsnaam:	Topa Verpakking BV			
Adres:	Torenlaan 10			
Plaats:	VOORHOUT	Contactpersoon:	Brigitte Zwart	
Postcode:	2215 RW			

Weeginstrument

Fabrikant:	TOYOTA	Type apparaat:	Weeginstrument	
Model:	LHM200SC / 2000kg	Inventarisnr:	n.v.t.	
Serienr:	21903798.191402	Terminal type:	n.v.t.	
Gebouw:	Loods	Terminal serienr.:	n.v.t.	
Verdieping:	BG	Terminal inv.nr.:	n.v.t.	
Kamer:	Expeditie			

Bereik	Max. capaciteit	Afleesbaarheid (d)
1	200 kg	0,2 kg
2	500 kg	0,5 kg
3	2000 kg	1 kg

Procedure

Kalibratierichtlijn: EURAMET cg-18 v. 4.0 (11/2015) Mettler Toledo Werkinstructie:

De kalibratie werd uitgevoerd bij de klant, tenzij anders aangegeven bij opmerkingen.

Het weeginstrument werd bijgeregeld vóór de nacontrole met een extern kalibratiegewicht.

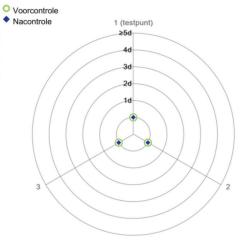
In overeenstemming met EURAMET cg-18 (11/2015) werden de testbelastingen geselecteerd om het specifieke gebruik van de weeginrichting weer te geven of om rekening te houden met specifieke kalibratievoorwaarden.

	Temp	eratuur
Voorcontrole	Start: 18,3 °C	Einde: 18,3 °C
Nacontrole	Start: 17,5 °C	Einde: 17,5 °C

Datum voorcontrole:	14-apr-2023	Servicetechnicus:	OL-
Datum nacontrole:	14-apr-2023		7
Datum van uitgifte:	14-apr-2023		Eric Geurtsen
Gewenste volgende kalibratiedatum:	30-apr-2024		

Software versie: 1.23.1.99 Rapport versie: 2.17.8 Document Nr.: FORM CAL A01NL © METTLER TOLEDO

Pagina 1 van 5


Meetresultaten

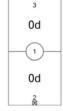
Herhaalbaarheid

Testgewicht: 200 kg

	Voorcontrole	Nacontrole
1	201,5 kg	200,0 kg
2	201,5 kg	200,0 kg
3	201,5 kg	200,0 kg

De "d" in de grafiek vertegenwoordigt de afleesbaarheid van het bereik waarin de test werd uitgevoerd

De resultaten in de grafiek zijn gebaseerd op de absolute waarden als verschil van de gemiddelde waarde.


Excentrische belasting

Testgewicht: 750 kg

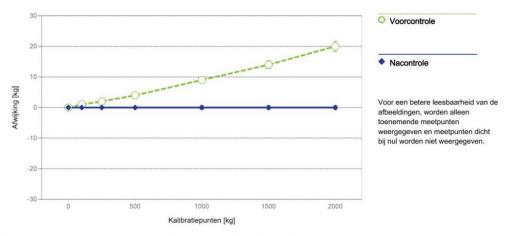
Positie	Voorcontrole	Nacontrole
1	756 kg	750 kg
2	756 kg	750 kg
3	757 kg	750 kg

Maximale 1 kg	0 kg
---------------	------

Voorcontrole

Nacontrole

De "d" in de grafiek vertegenwoordigt de afleesbaarheid van het bereik waarin de test werd uitgevoerd


Afwijking

Voorcontrole

	Referentiewaarde	Aflezing	Afwijking	Vergrote onzekerheid	k
1	0 kg	0,0 kg	0,0 kg	0,12 kg	2
2	20 kg	20,0 kg	0,0 kg	0,16 kg	2
3	100 kg	101,0 kg	1,0 kg	0,18 kg	2
4	250 kg	252,0 kg	2,0 kg	0,37 kg	2
5	500 kg	504 kg	4 kg	0,7 kg	2
6	1000 kg	1009 kg	9 kg	1,0 kg	2
7	1500 kg	1514 kg	14 kg	1,3 kg	2
8	2000 kg	2020 kg	20 kg	1,7 kg	2

Nacontrole

	Referentiewaarde	Aflezing	Afwijking	Vergrote onzekerheid	k
1	0 kg	0,0 kg	0,0 kg	0,12 kg	2
2	20 kg	20,0 kg	0,0 kg	0,16 kg	2
3	100 kg	100,0 kg	0,0 kg	0,16 kg	2
4	250 kg	250,0 kg	0,0 kg	0,31 kg	2
5	500 kg	500 kg	0 kg	0,31 kg	2
6	1000 kg	1000 kg	0 kg	0,6 kg	2
7	1500 kg	1500 kg	0 kg	0,6 kg	2
8	2000 kg	2000 kg	0 kg	0,6 kg	2

De gerapporteerde onzekerheid is de vergrote onzekerheid, ontstaan door de standaardonzekerheid te vermenigvuldigen met een dekkingsfactor k, welke groter kan zijn dan 2 volgens EURAMET cg-18. Deze waarde ligt binnen een betrouwbaarheidsinterval van $ongeveer 95\ \%\ .\ De\ standaard onzekerheid\ is\ bepaald\ volgens\ EA-4/02.\ Mettler\ Toledo\ adviseert\ de\ gebruiker\ om\ dezelfde$ omgevingscondities en dezelfde instellingen van het weeginstrument te handhaven als waren deze tijdens het uitvoeren van de kalibratie.

METTLER TOLEDO Service

26-sep-2022

26-sep-2023

Testapparatuur

De metingen zijn uitgevoerd met standaarden waarvan de herleidbaarheid naar (inter-)nationale standaarden is aangetoond. Deze standaarden werden gekalibreerd en gecertificeerd door een geaccrediteerd kalibratielaboratorium.

Gewichtenset 1: OIML F1

Gewichtenset 1. Olivic F1			
Gewichtensetnr.:	798	Datum van uitgifte:	14-mrt-2023
Certificaatnummer:	E23/073/036	Volgende kalibratiedatum:	14-mrt-2024
Gewichtenset 2: OIML M1			
Gewichtensetnr.:	DO6	Datum van uitgifte:	26-sep-2022
Certificaatnummer:	E22/269/029	Volgende kalibratiedatum:	26-sep-2023
Gewichtenset 3: OIML M1			
Gewichtensetnr.:	C041	Datum van uitgifte:	26-sep-2022
Certificaatnummer:	E22/260/026	Volgende kalibratiedatum:	26-sep-2023
Gewichtenset 4: OIML M1			
Gewichtensetnr.:	C040	Datum van uitgifte:	26-sep-2022
Certificaatnummer:	E22/269/022	Volgende kalibratiedatum:	26-sep-2023
Gewichtenset 5: OIML M1			
Gewichtensetnr.:	B008	Datum van uitgifte:	26-sep-2022
Certificaatnummer:	E22/269/021	Volgende kalibratiedatum:	26-sep-2023

Opmerkingen

Gewichtenset 6: OIML M1

Gewichtensetnr.:

Certificaatnummer:

B010

E22/269/021

De gebruiker dient de prestaties van de apparatuur ter plaatse opnieuw te verifiëren met de juiste normen voorafgaand aan gebruik

Datum van uitgifte:

Volgende kalibratiedatum:

Meetonzekerheid van het weeginstrument in gebruik

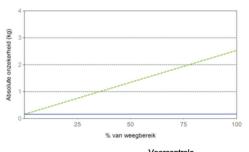
De opgegeven onzekerheid is de vergrote onzekerheid met k = 2 in gebruik. De formule dient gebruikt te worden voor een inschatting van de onzekerheid met inachtname van de lineariteit. De R-waarde is de netto aflezing in de afleeseenheid van het apparaat.

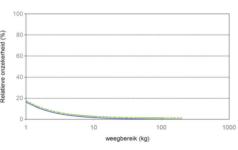
Temperatuurcoëfficiënt t.b.v. de bepaling van de meetonzekerheid in gebruik:

10,0 · 10⁻⁶ / K

Temperatuurbereik ter plaatse t.b.v. de bepaling van de meetonzekerheid in gebruik:

20 K


Formule ten behoeve van de onzekerheidsberekening


	Bereik		Voorcontrole	Nacontrole
	d	Max	Voorcontrole	Nacontrole
1	0,2 kg	200 kg	U ₁ = 163 g + 11,9 g/kg · R	U ₁ = 163 g + 0,0333 g/kg · R
2	0,5 kg	500 kg	U ₂ = 311 g + 12,0 g/kg · R	U ₂ = 311 g + 0,0431 g/kg · R
3	1 kg	2000 kg	U ₃ = 589 g + 12,3 g/kg · R	U ₃ = 589 g + 0,0825 g/kg · R

Om de stabiliteit van de linearisatie te optimaliseren, worden naast de nullast, alleen meetpunten gebruikt met een proefbelasting van 5% van het meetbereik of groter voor de berekening van de lineaire vergelijking.

Absolute- en relatieve meetonzekerheid bij gebruik voor verschillende netto indicaties (voorbeelden)

Netto aflezing	Voorcontrole		Naco	ntrole
2,0 kg	0,19 kg	9,3%	0,16 kg	8,2%
20,0 kg	0,40 kg	2,0%	0,16 kg	0,82%
200,0 kg	2,5 kg	1,3%	0,17 kg	0,085%
1000 kg	13 kg	1,3%	0,67 kg	0,067%
2000 kg	25 kg	1,3%	0,75 kg	0,038%

Nacontrole Voorcontrole

Het weegbereik in de onzekerheidsgrafiek heeft betrekking op het fijnbereik of eerste interval van het weeginstrument

4. Ultra Low Freezer #15

- Manufacturer:
- Type:
- Dimensions chamber (width x depth x height):
- Door dimensions:
- Temperature range:
- Programmable microprocessor for temperature:
- Calibration due date:

NuAire

6512E

63 x 60 x 128 cm

63 x 128 cm

-85 °C to -40 °C (± 2 °C)

N/A: constant temperature only

February 2024

22 Feb 2023

22 Feb 2024

(23.0 ± 5) °C

(50 ± 30) %rh

Voorhout

Date of Calibration:

Date of Recalibration:

Place of Calibration:

Temperature within:

Humidity within:

Certificate of Calibration Fluke Nederland B.V.

SA01141933 Certificate Number: IN TOLERANCE **Receive Condition:** IN TOLERANCE Return Condition: NUAIRE Manufacturer:

NU-6512E Serial Number: 90403726

Description: ULTRA LOW FREEZER -40 TO -85 DEGREES

Manual Procedure Procedure:

Customer: TOPA INSTITUTE

> VOORHOUT FREEZER 15

Customer Asset ID: 606300972 RMA Number:

All measurements are traceable to national and/or international standards or have been derived by approved ratio techniques. When possible standards used for this calibration are ISO/IEC 17025 accredited calibrated.

This calibration is performed by a DEKRA certified lab for ISO 9001. This certificate may not be reproduced other than in full. Calibration certificates without signatures, either electronic or handwritten, are not valid.

Issue Date: 22 Feb 2023

Electronically signed

Authorized By D.W.G. de Visser

Rev 230217 Fluke Nederland B.V. E-mail Telephone

Brainport Industries Campus 1, 5657 BX, Eindhoven

service.nl@fluke.com

+31 40 267 5300

Page 1 of 3

Certificate of Calibration

Certificate Number: SA01141933

Remarks

- The calibration status found in this certificate on the top of each results page must be interpreted as:

: Data collected before the unit was adjusted and / or repaired As Found As Left : Data collected after the unit has been adjusted and / or repaired Found / Left : Data collected without any adjustment and / or repair performed

- The calibration interval (due date) is the responsibility of the end user.
- According to the European norm 'Operation of electrical installations' NEN-EN 50110-1 release 2013 and the Dutch norm NEN 3140 release 2015 paragraph 5.102.12 through 5.102.16, a safety test is not required. Therefore not performed.
- Temperature conversions (if applicable) are performed according to ISO/IEC 60584:2013 for thermocouples, and ISO/IEC 60751:2022 for resistance temperature devices.

Standards and test-equipment used

Inventory No	Model	Serial No
TS0094	2626-S	C19075
TS0249	TEMPERATURE-PROBE	FTE PT-100 SET

Page 2 of 3

CalNet_®

Calibration Data Report

Certificate r	number: SA0114	11933		Calib	ration Date:	22 Feb 23
Supplie	d value	Location	Lower limit	Measured value	Upper limit	% of Tol.
Temperature (ITS setpoint	-90) calibration indicator					
-85 °C	-84 °C	1	-90.0	-84.0 °C	-80.0	1
-85 °C	-84 °C	2	-90.0	-83.8 °C	-80.0	3
Temperature varia	ation over time (30 m	ninutes)	-1.0	0.8 °C	1.0	80
setpoint	indicator					
-40 °C	-41 °C	1	-45.0	-40.9 °C	-35.0	3
-40 °C	-41 °C	2	-45.0	-39.6 °C	-35.0	36
Temperature varia	ation over time (30 m	ninutes)	-1.0	0.2 °C	1.0	22
Location: 1 2		Lower Upper				

Remarks:

This measurement was done without test object(s) in the chamber. Customer specification \pm 2°C and \pm 1°C for stability

Page 3 of 3

5. Ultra Low Freezer #20

Manufacturer:

• Type:

• Dimensions chamber (width x depth x height):

Door dimension:

Temperature range:

• Programmable microprocessor for temperature:

Calibration due date:

NuAire

6625V30

86 x 60 x 128 cm

86 x 128 cm

-85 °C to -40 °C (± 2 °C)

N/A: constant temperature only

February 2024

20 Feb 2023

20 Feb 2024

(23.0 ± 5) °C

(50 ± 30) %rh

Voorhout

Certificate of Calibration Fluke Nederland B.V.

Date of Calibration:

Date of Recalibration:

Place of Calibration:

Temperature within:

Humidity within:

Certificate Number: SA01140641

Receive Condition: IN TOLERANCE

Return Condition: IN TOLERANCE

Manufacturer: NEW BRUNSWICK

Model: C660

 Serial Number:
 1004-5488-0404

 Description:
 ULTRA DEEP FREEZER

 Procedure:
 Manual Procedure

Customer: TOPA INSTITUTE

VOORHOUT

Customer Asset ID: FREEZER 20 RMA Number: 606300972

All measurements are traceable to national and/or international standards or have been derived by approved ratio techniques. When possible standards used for this calibration are ISO/IEC 17025 accredited calibrated.

This calibration is performed by a DEKRA certified lab for ISO 9001. This certificate may not be reproduced other than in full. Calibration certificates without signatures, either electronic or handwritten, are not valid.

Issue Date: 20 Feb 2023

Electronically signed

Authorized By
D.W.G. de Visser

Fluke Nederland B.V. E-mail Telephone Rev 230217

Brainport Industries Campus 1, 5657 BX, Eindhoven

service.nl@fluke.com

+31 40 267 5300

Page 1 of 3

Certificate of Calibration

Certificate Number: SA01140641

Remarks

- The calibration status found in this certificate on the top of each results page must be interpreted as:

As Found : Data collected before the unit was adjusted and / or repaired As Left : Data collected after the unit has been adjusted and / or repaired Found / Left : Data collected without any adjustment and / or repair performed

- The calibration interval (due date) is the responsibility of the end user.
- According to the European norm 'Operation of electrical installations' NEN-EN 50110-1 release 2013 and the Dutch norm NEN 3140 release 2015 paragraph 5.102.12 through 5.102.16, a safety test is not required. Therefore not performed.
- Temperature conversions (if applicable) are performed according to ISO/IEC 60584:2013 for thermocouples, and ISO/IEC 60751:2022 for resistance temperature devices.

Standards and test-equipment used

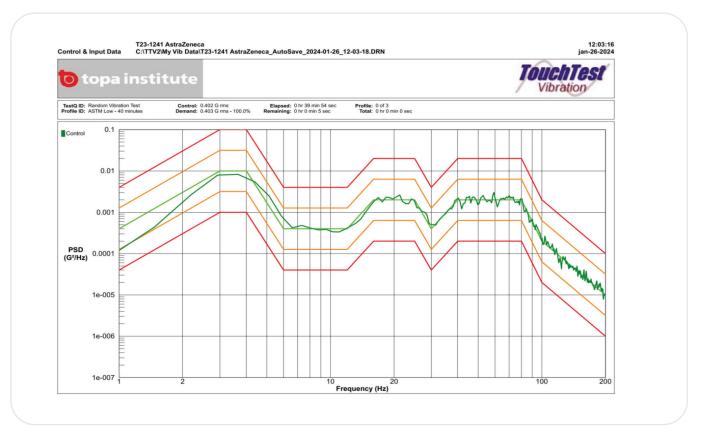
Inventory No	Model	Serial No
TS0094	2626-S	C19075
TS0249	TEMPERATURE-PROBE	FTE PT-100 SET

Page 2 of 3

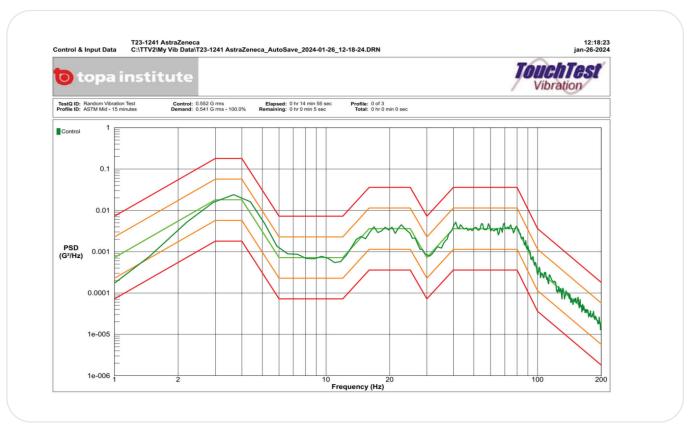
CalNet_®

Calibration Data Report

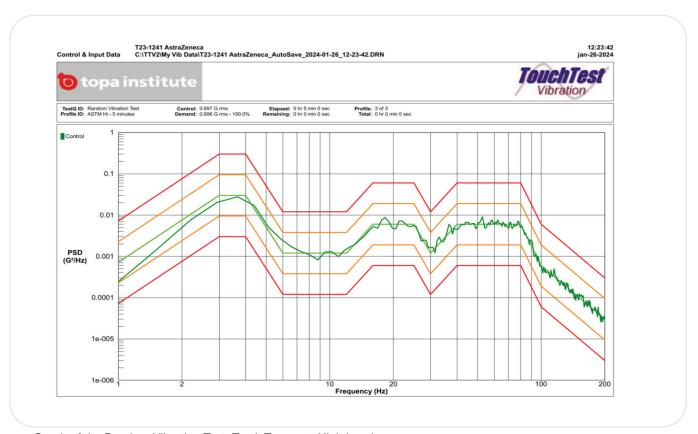
Certificate number: SA01140641				Calib	20 Feb 23	
Supplie	ed value	Location	Lower limit	Measured value	Upper limit	% of Tol.
Temperature (ITS setpoint	G-90) calibration indicator					
-50.0 °C	-50.0 °C	1	-55.0	-51.0 °C	-45.0	21
-50.0 °C	-50.0 °C	2	-55.0	-51.1 °C	-45.0	22
-50.0 °C	-50.0 °C	3	-55.0	-50.2 °C	-45.0	4
-50.0 °C	-50.0 °C	4	-55.0	-49.7 °C	-45.0	6
-50.0 °C	-50.0 °C	5	-55.0	-50.4 °C	-45.0	8
Temperature varia	ation over time (30 r	minutes)				
			-1.0	1.0 °C	1.0	99
Temperature (ITS	6-90) calibration					
setpoint	indicator					
-86.0 °C	-84.0 °C	1	-91.0	-86.2 °C	-81.0	4
-86.0 °C	-84.0 °C	2	-91.0	-86.2 °C	-81.0	4
-86.0 °C	-84.0 °C	3	-91.0	-83.9 °C	-81.0	42
-86.0 °C	-84.0 °C	4	-91.0	-83.5 °C	-81.0	50
-86.0 °C	-84.0 °C	5	-91.0	-84.2 °C	-81.0	36
Temperature varia	ation over time (30 r	minutes)				
			-1.0	0.1 °C	1.0	10

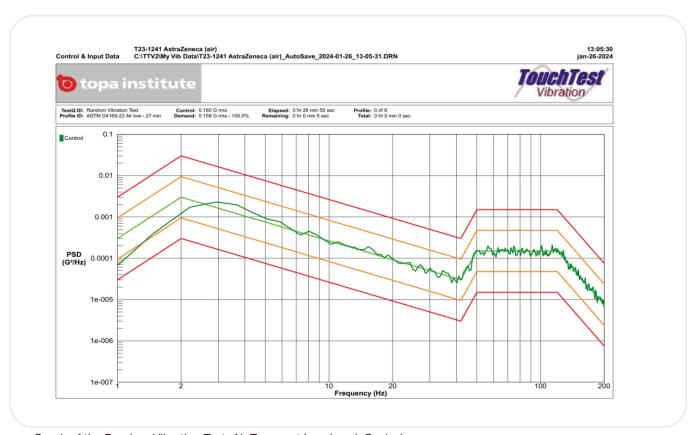

Location:

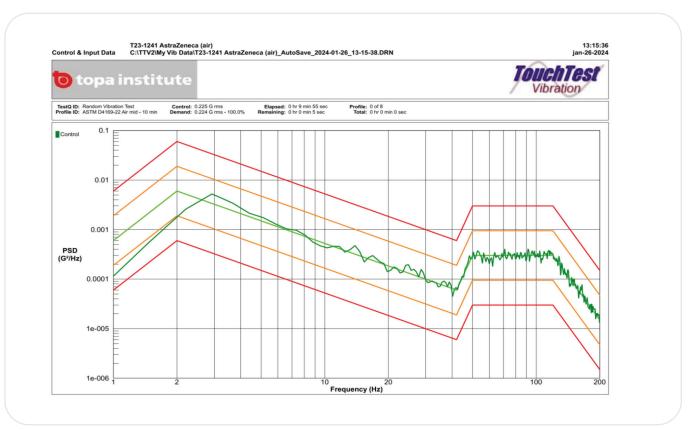
- 1 Lower left front
- 2 Upper left rear
- 3 Upper right front
- 4 Lower right rear
- 5 Center


This measurement was done with little test object(s) in the chamber.

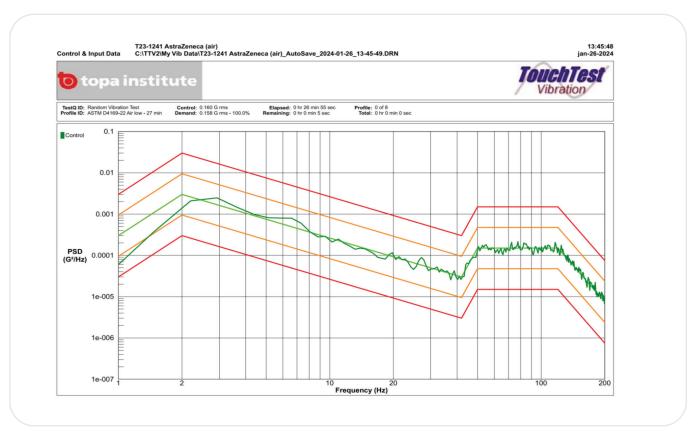
Page 3 of 3


Appendix B: Random Vibration Test Graphs

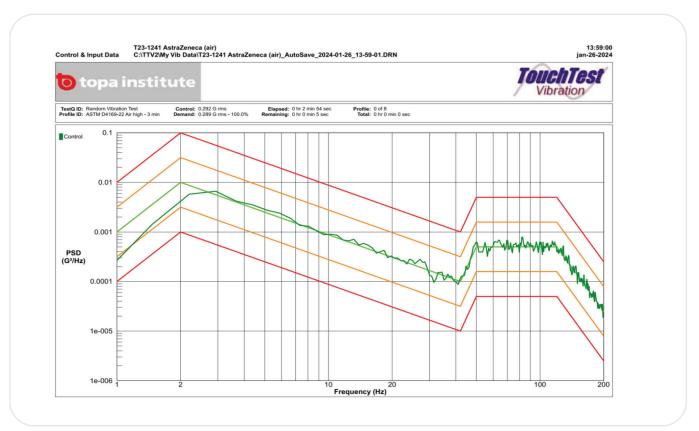

Graph of the Random Vibration Test, Truck Transport Low Level


Graph of the Random Vibration Test, Truck Transport Medium Level


Graph of the Random Vibration Test, Truck Transport High Level

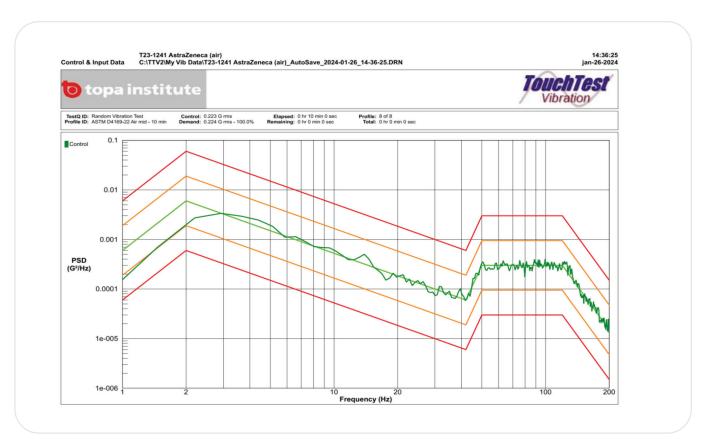

Graph of the Random Vibration Test, Air Transport Low Level, Cycle 1

Graph of the Random Vibration Test, Air Transport Medium Level, Cycle 1


Graph of the Random Vibration Test, Air Transport High Level, Cycle 1


Graph of the Random Vibration Test, Air Transport Low Level, Cycle 2


Graph of the Random Vibration Test, Air Transport Medium Level, Cycle 2


Graph of the Random Vibration Test, Air Transport High Level, Cycle 2

Graph of the Random Vibration Test, Air Transport Low Level, Cycle 3

Graph of the Random Vibration Test, Air Transport Medium Level, Cycle 3

Graph of the Random Vibration Test, Air Transport High Level, Cycle 3

Appendix C: History of Change

0	AF	12 February 2024	All	Create new document

 $\ @$ 2025 Meissner Filtration Products, Inc. All rights reserved. Transport Simulation Test Report 1.0

