Table of Contents - SepraPor® Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepraPor® Filters</td>
<td>3</td>
</tr>
<tr>
<td>Materials of Construction</td>
<td>3</td>
</tr>
<tr>
<td>Configurations</td>
<td>3</td>
</tr>
<tr>
<td>Dimensions</td>
<td>4</td>
</tr>
<tr>
<td>Operating Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>Cartridge Installation</td>
<td>6</td>
</tr>
<tr>
<td>Integrity Test: Bubble Point and Diffusive Flow</td>
<td>8</td>
</tr>
<tr>
<td>Measuring Clean Water Flux</td>
<td>10</td>
</tr>
<tr>
<td>Correlating Clean Water Flux to Bubble Point</td>
<td>11</td>
</tr>
<tr>
<td>Sterilization Instructions</td>
<td>11</td>
</tr>
<tr>
<td>System Start-Up</td>
<td>14</td>
</tr>
<tr>
<td>Post-Use Cleaning</td>
<td>14</td>
</tr>
<tr>
<td>Used Membrane Storage</td>
<td>16</td>
</tr>
<tr>
<td>Storage and Shelf Life</td>
<td>16</td>
</tr>
<tr>
<td>Quality Assurance</td>
<td>16</td>
</tr>
<tr>
<td>Cartridge Ordering Matrix Description</td>
<td>17</td>
</tr>
<tr>
<td>Capsule Ordering Matrix Description</td>
<td>18</td>
</tr>
</tbody>
</table>
SepraPor® Filters

SepraPor® are tangential flow filtration devices containing microporous hollow fiber membranes (HFM). SepraPor® filters are ideal for use in a variety of biopharmaceutical applications including bacterial cell concentration, mammalian cell concentration, yeast concentration, and continuous cell culture perfusion. SepraPor® filters are available in a range of sizes in both capsule and cartridge configurations. Cartridges are designed to fit inside stainless steel housings for steam-in-place (SIP) sterilization and operation. Capsules are available as standalone filters or as part of process-ready, gamma-sterilized assemblies. SepraPor® capsule and cartridge filters are designed to withstand the rigors of autoclave, SIP, or gamma sterilization.

Materials of Construction

SepraPor® filters are manufactured using high quality components, which are all animal component free (ACF), non-toxic, and biologically inert. The materials are listed for food contact use in the Code of Federal Regulations (CFR), Title 21 or meet Commission Regulation (EU) No 10/2011, as below:

Components

All devices:
- Membrane: Polysulfone, CFR Title 21, 177.1655
- Bundle netting: Polypropylene, CFR Title 21, 177.1520
- Outer sleeve: Polysulfone, CFR Title 21, 177.1655
- Fiber potting: Epoxy
 - EU No 10/2011

Cartridges:
- End O-rings: Silicone, CFR Title 21, 177.2600

Capsules:
- Permeate Ports: Polysulfone, CFR Title 21, 177.1655
- Retentate Ports: Polysulfone, CFR Title 21, 177.1655
- End Caps: Polysulfone, CFR Title 21, 177.1655

The SepraPor® filter meets requirements as specified in the current USP <88> Biological Reactivity Test for Class VI Plastics.

Configurations

SepraPor® filters can be manufactured in a variety of configurations and lengths for XFM cartridges and XFC capsules. See the "Ordering Matrix Descriptions" section at the end of this document for configuration part numbers, and Figure 1 and Figure 2 for drawings of capsules and cartridges, respectively.

![Figure 1: Standard configurations for SepraPor® hollow fiber capsule filters. 30 cm path length capsules shown.](image1)

![Figure 2: Standard configurations for SepraPor® hollow fiber cartridge filters for Steam-In-Place (SIP) use.](image2)
All hollow fibers for capsules and cartridges have an inner diameter (I.D.) of 1.0 mm and an outer diameter (O.D.) of 1.5 mm.

Capsules

Table 1: Dimensions of SepraPor® capsule filters.

<table>
<thead>
<tr>
<th>Filter Diameter</th>
<th>Fluid Path Length (Nominal)</th>
<th>Filter Length</th>
<th>Effective Filtration Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95 cm (3/8"")</td>
<td>30 cm (12")</td>
<td>31.8 cm (12.5")</td>
<td>0.011 m² (0.12 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>63.5 cm (25.0")</td>
<td>0.023 m² (0.25 ft²)</td>
</tr>
<tr>
<td>1.9 cm (¾")</td>
<td>30 cm (12")</td>
<td>34.5 cm (13.6")</td>
<td>0.042 m² (0.45 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>66.0 cm (26.0")</td>
<td>0.085 m² (0.91 ft²)</td>
</tr>
<tr>
<td>2.5 cm (1")</td>
<td>30 cm (12")</td>
<td>31.8 cm (12.5")</td>
<td>0.075 m² (0.81 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>63.5 cm (25.0")</td>
<td>0.15 m² (1.6 ft²)</td>
</tr>
<tr>
<td>3.2 cm (1 ¼")</td>
<td>30 cm (12")</td>
<td>31.8 cm (12.5")</td>
<td>0.12 m² (1.3 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>63.5 cm (25.0")</td>
<td>0.23 m² (2.5 ft²)</td>
</tr>
<tr>
<td>5.1 cm (2")</td>
<td>30 cm (12")</td>
<td>35.1 cm (13.8")</td>
<td>0.36 m² (3.9 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>63.5 cm (25.0")</td>
<td>0.84 m² (9.0 ft²)</td>
</tr>
<tr>
<td>7.6 cm (3")</td>
<td>30 cm (12")</td>
<td>35.6 cm (14.0")</td>
<td>0.92 m² (9.9 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>67.3 cm (26.5")</td>
<td>2.1 m² (23 ft²)</td>
</tr>
<tr>
<td>10.8 cm (4 ¼")</td>
<td>30 cm (12")</td>
<td>50.3 cm (19.8")</td>
<td>2.5 m² (27 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>73.2 cm (28.8")</td>
<td>4.4 m² (47 ft²)</td>
</tr>
</tbody>
</table>

Cartridges

Table 2: Dimensions of SepraPor® cartridge filters.

<table>
<thead>
<tr>
<th>Filter Diameter</th>
<th>Fluid Path Length (Nominal)</th>
<th>Filter Length</th>
<th>Effective Filtration Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 cm (2")</td>
<td>30 cm (12")</td>
<td>31.2 cm (12.3")</td>
<td>0.4 m² (4.3 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>63.2 cm (24.9")</td>
<td>0.8 m² (8.6 ft²)</td>
</tr>
<tr>
<td>7.6 cm (3")</td>
<td>30 cm (12")</td>
<td>31.2 cm (12.3")</td>
<td>0.9 m² (9.7 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>63.2 cm (24.9")</td>
<td>2.1 m² (22.6 ft²)</td>
</tr>
<tr>
<td>10.2 cm (4")</td>
<td>30 cm (12")</td>
<td>39.4 cm (15.5")</td>
<td>2.3 m² (24.8 ft²)</td>
</tr>
<tr>
<td></td>
<td>60 cm (24")</td>
<td>62.2 cm (24.5")</td>
<td>4.2 m² (45.2 ft²)</td>
</tr>
<tr>
<td>15 cm (5.9")</td>
<td>60 cm (24")</td>
<td>62.5 cm (24.6")</td>
<td>8.3 m² (89.3 ft²)</td>
</tr>
</tbody>
</table>
Operating Characteristics

Cartridges and Capsules
Operating Temperature Range: 32 °F to 100 °F (0 °C to 38 °C)
Maximum Operating Temperature: 122 °F (50 °C) for short-term operation such as cleaning

Table 3: Operating pressures for SepraPor® microfiltration porosities.

<table>
<thead>
<tr>
<th>Porosity (µm)</th>
<th>Maximum Transmembrane Pressure (TMP)</th>
<th>Maximum Feed Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>10 psig @ 75 °F (0.69 bar @ 25 °C)</td>
<td>15 psig @ 75 °F (1.03 bar @ 25 °C)</td>
</tr>
<tr>
<td>0.2</td>
<td>15 psig @ 75 °F (1.03 bar @ 25 °C)</td>
<td>25 psig @ 75 °F (1.72 bar @ 25 °C)</td>
</tr>
<tr>
<td>0.1</td>
<td>20 psig @ 75 °F (1.38 bar @ 25 °C)</td>
<td>30 psig @ 75 °F (2.07 bar @ 25 °C)</td>
</tr>
</tbody>
</table>
Meissner SepraPor® cartridge filters are available in a number of different adapter and O-ring configurations designed to fit inside stainless steel cartridge housings. The filter cartridge should fit snugly in the housing. Improper installation can impair filtration efficiency and compromise system sterility.

1. Verify that the correct filter part number for the application has been selected.
2. Assemble the stainless steel filter housing to the step where the SepraPor® filter is to be installed.
3. Remove the SepraPor® filter from its packaging and install into the stainless steel housing. SepraPor® filters are symmetrical so there is no top- or bottom-orientation.
4. Ensure that the filter is securely and evenly seated in the base of the housing.
 a. To assist with proper installation, see Meissner’s Cartridge Insertion Tool instructions.
5. Install the filter upper support of the housing, ensuring that it sits snugly and evenly around the top of the filter.
6. Ensure that all O-rings are seated evenly.
7. Proceed with housing assembly and rinsing of the SepraPor® filter per the instructions below.

Rinsing Procedure for New Filters

Stand-alone non-sterile microfiltration filters contain glycerol as part of the manufacturing process. Although highly permeable, rinsing of new filters is essential prior to integrity testing, sterilization, sanitization, or direct use.

NOTE: We recommend rinsing with deionized water at a feed pressure of 5 psi for at least 5 minutes. If you have water supply constraints, a recirculation scheme such as the “Water Conservation Rinsing Procedure” below may be used. This rinse scheme reduces water usage and is presented as an example. However, the standard rinsing procedure is recommended for more thorough reduction of TOC.

1. Following installation of the filter cartridge into a stainless steel housing, or if using a capsule filter, connect the retentate and permeate lines to waste containers.
2. Fill a feed reservoir with room temperature or warm (up to 50 °C [122 °F]) deionized water (DIW) for rinsing. Cold water is less effective at removing glycerol. Rinsing with a feed pressure of 5 psi for at least 5 minutes is recommended.
3. Start the feed pump at a slow flow rate and adjust feed pressure to 5 psig for all microfiltration pore sizes, adding more water as required. Slowly close the retentate outlet valve to increase the permeate flow to improve the clean water flux through the fibers, while maintaining the cross-flow to a trickle from the retentate outlet.
Water Conservation Rinsing Procedure

This rinsing procedure is provided only as an example of a reduced water usage rinsing scheme, and is recommended only if the standard rinsing procedure presented above is not possible due to water supply constraints.

1. Following installation of the filter cartridge into a stainless steel housing, or if using a capsule filter, connect the retentate and permeate lines to waste containers.

2. Fill a feed reservoir with room temperature or warm (up to 50 °C [122 °F]) deionized water (DIW) for rinsing. Cold water is less effective at removing glycerol.

3. Start the feed pump at a slow flow rate and adjust the feed pressure to 5 psig and slowly close the retentate outlet valve to increase the permeate flow to improve the clean water flux through the fibers, while maintaining the cross-flow to a trickle from the retentate outlet.

4. Following flushing for 1 minute, direct retentate and permeate lines to the feed reservoir and recirculate water through the system for an additional four minutes. After recirculating, direct retentate and permeate lines to waste containers and drain the feed reservoir.

5. Fill the feed reservoir with fresh water and start the pump. Flush at 5 psig for 1 minute through the filter to the waste containers.
The bubble point and diffusive flow tests are industry accepted nondestructive methods for verifying the integrity of a membrane filter. These tests may be performed manually as described in this section or with the use of an automated integrity tester such as Meissner's AccuFlux® Integrity Tester. In each method, the test pressure varies directly with the surface tension of the wetting fluid. For test values using wetting fluids other than those used in the procedures below, please contact Meissner Filtration Products.

Bubble Point Test Procedure

This procedure outlines the steps required to perform a bubble point test on SepraPor® filter cartridges or capsules. The manual bubble point test requires a wetted filter, a calibrated pressure gauge, a regulated gas pressure source (usually compressed air or nitrogen), narrow diameter downstream tubing, and a beaker of water in which the tubing outlet is submerged. Air pressure is applied to the wetted filter and gradually increased until a steady stream of bubbles is observed to come from the submerged tubing.

Procedure:

1. A system setup for performing the bubble point test is shown below in Figure 4.
2. Ensure hollow fiber membrane is fully wetted out with 60/40 IPA/Water (by vol.).
3. Close all valves.
4. Open V₁ and V₂. Thoroughly wet the filter with the wetting solution by opening V₄ and slowly closing off V₂, and letting the wetting solution permeate through the fibers and fill the housing.
5. Open vent V₅ to allow trapped air to escape and then close V₅. The complete wetting of the filter is crucial to the accuracy of the test. An incompletely wetted filter will fail. Once the housing is filled with the solution, the fibers should be sufficiently wetted.
6. Close V₁.
7. Drain excess solution from the housing shell using V₅ and V₂. If using an air flow meter, ensure the shell is sufficiently drained of solution such that displaced solution does not enter into the flow meter.
8. Close V₅ and V₂.
9. Open V₃ and apply air pressure of 5 psi to the inlet side of the system. This will push the upstream volume of wetting solution through the filter.
10. Increase the air pressure slowly at about 1 psig/sec until a constant stream of bubbles is observed to come from the submerged tubing. Alternatively, a more accurate method of carrying out the measurement is to use a digital flow meter with a low volume range.
11. The initial stream of air is usually entrapped air and may produce a large amount of bubbling that will decrease rapidly and be replaced by regularly spaced bubbles produced by air diffusing through the filter membrane. Slowly increase the pressure while observing for continuous bubbling from the bubble point tube. Do not confuse the additional bubbles produced by a rapid increase in air pressure with the bubble point. Observe the bubbles when the air pressure has stabilized. The bubble point is the pressure at which a marked change in the rate of bubbling occurs.
12. When a steady stream of bubbles is detected, the bubble point pressure has been reached.
The Diffusive Flow Test may be performed on SepraPor® hollow fiber filter cartridges or capsules. The filter is wetted, drained, and a constant air pressure is applied. Diffusive air flow through the membrane is measured.

Procedure:

1. A system setup for performing the Diffusive Flow Test is shown in Figure 5.
2. Close all valves.
3. Open V_1 and V_2. Thoroughly wet the filter with water, opening vent V_4 to allow trapped air to escape. The complete wetting of the filter is crucial to the accuracy of the test. An incompletely wetted filter will fail. Slower flow rates can be used for longer periods. Backpressure should be applied by partially closing V_2 while flowing wetting solution through the filter. Do not exceed the recommended maximum transmembrane pressure rating of the porosity of the filter being tested.
4. Drain excess water from the housing shell using V_5 and V_2. If using an air flow meter, ensure the shell is sufficiently drained of water such that displaced water does not enter the flow meter.
5. Close V_1, V_5, and V_2.
6. Open V_3 and apply air pressure of 15 psi (1.0 bar) to the inlet side of the system. This will push the upstream volume of water through the filter.
7. If necessary, open V_5 to drain the downstream volume of water. Water remaining downstream of the filter may cause an inaccurate diffusion reading by interfering with the air flow in the outlet tube. Close V_5.
9. Verify the test pressure and adjust as necessary. Allow the air flow to stabilize.
10. Fill a graduated cylinder with water and invert into a container of water. Place the outlet tubing from V_4 underneath the opening of the cylinder and measure the volume of air diffused per minute. The recorded flow rate must not exceed the normalized flow rate related to filter surface area.

Table 4: Diffusive flow values for integral SepraPor® hollow fiber filters, wetted with 100% water.

<table>
<thead>
<tr>
<th>SepraPor® Hollow Fibers</th>
<th>Maximum DF (mL/min/m²) 15 psig</th>
<th>Maximum DF (mL/min/ft²) 15 psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF rating (µm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>≤ 30</td>
<td>≤ 2.79</td>
</tr>
<tr>
<td>0.2</td>
<td>≤ 30</td>
<td>≤ 2.79</td>
</tr>
<tr>
<td>0.1</td>
<td>≤ 30</td>
<td>≤ 2.79</td>
</tr>
</tbody>
</table>
Measuring Clean Water Flux

After establishing integrity of the filter and system, the next step with a new SepraPor® filter is to obtain baseline clean water flux data. Water flux is important to correlate with bubble point data to confirm the desired porosity of the HFM. Baseline water flux also allows post-use, post-cleaning flux to be compared for cleanability and reusability of the HFM.

Baseline data should be generated under easily repeatable conditions so that comparisons with water flux data after cleaning cycles can be made directly. Parameters to control for reproducibility are:

- Water temperature
- Cartridge inlet pressure
- Cartridge outlet pressure
- Permeate flow rate
- System piping

"Clean" water, defined as 10,000 NMWC (or tighter) ultrafiltration permeate, or WFI, is required to ensure contaminants are not present which could negatively impact membrane performance.

Water flux is measured most reliably at low pressure. Minimal crossflow is required, and the retentate valve only needs to be slightly cracked open to ensure elimination of air trapped on the lumen side of the HFM. Care should be taken not to restrict permeate flow, such as with small diameter tubing or long fluid path lengths.

Procedure:

1. Fully open the permeate valve.
2. Crack open the retentate valve.
3. Start the feed pump, increasing flow to a feed pressure of 0.07 – 0.3 barg (1 – 5 psig) for microfiltration devices. The objective is to attain a consistent, measurable permeate flow at low inlet pressure. Use 2 or 3 psig inlet pressure. Record the outlet pressure as well.
4. Start the measurement with the outlet valve cracked open to vent the air. Then close the outlet valve until only a trickle of water is observed.
5. Measure the permeate flow in mL/min and calculate the flux in L/m²/hr/bar (LMH/bar) per the following equation: flux needs to be in LMH/bar.

\[
\text{Flow (LMH/bar)} = \frac{\text{Permeate flow (ml/min)}}{\text{Cartridge area (m}^2)\times 0.06} / \text{TMP (bar)}
\]

\[
\text{TMP} = \left(\frac{P_{\text{inlet}} + P_{\text{outlet}}}{2}\right) - P_{\text{permeate}}
\]

NOTE: \(P_{\text{permeate}} \) is assumed to be 0 psi at low \(P_{\text{inlet}} \)

6. Measure the temperature of the water.
7. Record inlet and outlet pressures, permeate flow rate, and temperature into a data log form or spreadsheet.
8. Normalize the flux temperature to 25°C per the following equation:

\[
\text{Temperature corrected flux} = \left(\frac{\text{Flux}}{\text{T2}}\right) \times \frac{T1}{T2}
\]

where T1 = Reference temperature (e.g., 25 °C), and T2 = Actual temperature (°C)
Correlating Clean Water Flux to Bubble Point

Once Bubble Point and Clean Water Flux have been measured, ensure that the values lie within the ranges provided in the table below to confirm porosity of the HFM.

Table 5: Bubble point and normalized clean water flux for SepraPor® microfiltration porosities.

<table>
<thead>
<tr>
<th>Nominal Pore Size (µm)</th>
<th>Bubble Point in 60/40 IPA/Water</th>
<th>Normalized Clean Water Flux (LMH/bar @ 25 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>9 – 17 psi (0.6 – 1.2 bar)</td>
<td>≥ 7,500</td>
</tr>
<tr>
<td>0.2</td>
<td>18 – 25 psi (1.2 – 1.7 bar)</td>
<td>≥ 3,300</td>
</tr>
<tr>
<td>0.1</td>
<td>26 – 38 psi (1.8 – 2.6 bar)</td>
<td>≥ 1,800</td>
</tr>
</tbody>
</table>

Sterilization Instructions

For critical pharmaceutical and biotechnology applications, the sterility of the SepraPor® filter must be ensured prior to process use. Steam-in-place (SIP) and autoclaving are commonly used methods of sterilization for SepraPor® filters.

When using steam to sterilize SepraPor® filters, it is important to use gentle and gradual temperature and pressure gradients to heat and cool the filter, and to not exceed 121 °C. The recommended rate of heating and cooling is 1 °C/minute.

The longevity of a hollow fiber filter is correlated to steam sterilization cycle, cycle time, temperature, and number of sterilization cycles.

Autoclave Sterilization

Sterilize the SepraPor® filter at 121 °C and 15 psi for a minimum of 30 minutes, using a temperature ramp of no more than 1 °C/minute above 100 °C. A validated procedure that ramps temperature and pressure slowly to final sterilization temperature and pressure is required.

For users who do not have access to a programmable autoclave, instructions are provided below solely as a guide, and the user is ultimately responsible for properly validating their sterilization process.

1. Wet the filter following the new filter rinsing and preparation instructions included with the filter.
2. Warm the module in an oven at 100 °C for at least 90 minutes.
3. Transfer the warmed SepraPor® filter into the autoclave and sterilize at 121 °C for at least 30 minutes.
4. Allow the unit to cool to room temperature slowly for a minimum of 3 hours before use.

Steam-In-Place (SIP) Sterilization

SIP sterilization should be performed at 121 °C for a minimum of 30 minutes. A validated procedure that ramps temperature and pressure slowly to and from final sterilization temperature and pressure is required.

The procedure outlined below is intended as an initial starting point for developing an SIP process, and is specific to the 6-inch diameter SepraPor® cartridge in a stainless steel housing. Users may carry out their own proprietary SIP procedures, but in all cases, users should validate their SIP cycle parameters and equipment used to perform SIP sterilization.
1. Prepare filter for steaming by rinsing according to the new filter rinsing and preparation instructions.

2. Close the feed inlet valve (V1), retentate outlet valve (V2), permeate outlet valve (V3), low-point permeate drain (V4), and air inlet/vent valve (V5).

3. Open the retentate steam inlet valve (V6) and permeate steam inlet valve (V7).

4. Open the feed steam trap bypass valve (V8).

5. Close steam trap isolation valves (V9 and V10).

6. Introduce steam by cracking open the steam inlet valve (V11) or adjusting steam regulator to 1 psig (0.07 bar). Steam and water should trickle from the feed steam trap bypass valve (V8). Adjust the steam inlet valve so that the system outlet temperature heats up to 100 °C (212 °F) at a rate of 1 °C/minute.

7. Once outlet temperature reaches 100 °C, wait five minutes and open the permeate steam trap bypass valve (V4). Wait five more minutes and then close both steam trap bypass valves (V4 and V8).

8. Open the steam trap isolation valves (V9 and V10), maintaining steam flow into both the retentate and permeate sides of the filter. Condensate will drain from the steam traps.

9. Open the retentate valve (V2) slightly and slowly open the steam inlet valve (V11). Adjust the steam inlet valve so that the system outlet temperature heats up to 121 °C (250 °F) at a rate of 1 °C/minute.

10. Open the feed inlet valve (V1), retentate outlet valve (V2), and permeate outlet valve (V3) slightly.

11. If introducing steam to the remainder of the process system, slowly open the feed inlet valve (V1) and retentate outlet valve (V2), ensuring steam pressure does not drop. When the remainder of the process system comes up to pressure, fully open valves V1 and V2.

12. Steam for a minimum of 30 minutes at the specified pressure.

13. To cool the cartridge and housing, close all valves starting with those furthest from the steam source and working toward the source, and finishing by closing the steam inlet valve (V11).

14. Pressurize the system to 15 psi (1 bar) by opening the air inlet/vent valve (V5). Crack open one of the steam trap bypass valves (V4 or V8) to release pressure and maintain air flow through the filter assembly.

15. Allow the cartridge and system to cool gradually to ambient temperature. To help preserve filter integrity, maintain a cool down rate of -1 °C/minute.

16. Integrity-testing the filter post-sterilization is optional but recommended, and sometimes required in critical applications. If performing an integrity test, close all valves except the air inlet/vent valve (V5), retentate steam inlet valve (V6), and permeate steam trap bypass valve (V4). See Figure 8.

17. Attach flexible tubing to permeate steam trap bypass valve (V4) and immerse in a beaker of water.

18. Perform pressure hold integrity test by introducing air at approximately 5 psig (0.3 bar) through the air vent. Watch for bubbles coming from the permeate outlet. If only small bubbles form, the cartridge is integral.

19. To configure the filter system for processing, close the air inlet/vent valve (V5), retentate steam inlet valve (V6), permeate steam inlet valve (V7), steam trap bypass valves (V4 and V8), and steam trap isolation valves (V9 and V10).

20. Open feed inlet valve (V1), permeate outlet valve (V3), and retentate outlet valve (V2).

21. The filter system is now ready for processing.
General SIP Recommendations:
Meissner offers the following recommendations and techniques to help ensure efficient and effective operation of the filter system.

- Do not shock or expose the filter cartridge to pressure surges, as this can compromise filter integrity.
- Ensure that temperature increases and decreases are gradual, approximately 1 °C/minute during heating and cooling cycles.
- Fully wet the filter membrane before performing autoclave or steam sterilizations.
- Ensure differential pressure across the membrane does not exceed 5 psi (0.3 bar).
- Introduce steam simultaneously through both the retentate and permeate sides of the filter to prevent filter damage.
- Monitor steam temperature and pressure to ensure effective sterilization without compromising filter integrity.
- Steam must be free of rust and other particulates.
- Filter housing should be clean before the cartridge is installed.
- To ensure thorough sterilization, steam pressure in the system must be maintained at ≥ 15 psi.
- Establish a sterilization procedure that provides consistent sterilization results, and validate the procedure.
- Superheated steam can overheat the filter, causing damage to the cartridge and affecting membrane performance. Maintain sterilization temperature at 121 °C, or as close to this temperature as possible.
- Always check valve positions before operating or steaming the filter.
- Do not apply backpressure on the membrane.

![Pressure and Temperature Ramp During SIP Sterilization](image)

Figure 9: Recommended SIP sterilization cycle for the 6" SepraPor® cartridge at a temperature change rate of 1 °C/minute.

Gamma Irradiation

SepraPor® hollow fiber filter capsules (not cartridges) may be gamma irradiated with 25 – 40 kGy. Subsequent irradiations should be validated by the end-user. It is not recommended to autoclave or SIP an irradiated filter.
System Start-Up

Microfiltration

Improper start-up of high-flux microfiltration membranes can result in rapid gel layer formation leading to a decline in flux. During startup, close both permeate valves to establish the cross flow velocity as needed. If possible, circulate water or buffer solution initially to obtain the proper cross flow velocity before introducing your product solution.

During processing, aim to maintain an inlet pressure of less than 0.7 barg (10 psig), given the constraints of the recommended recirculation rates and the feed pump characteristics. Low inlet pressures will help prevent pore plugging by small particulates or cell fragments. Retentate pressure should be approximately 0 barg (0 psig).

After establishing the desired cross flow rate, begin permeate withdrawal by fully opening the permeate tubing valve. If you observe rapid flux decline, throttle the permeate tubing valve on subsequent trials to create backpressure in the permeate line. Controlling permeate flow rate can stabilize flux and improve long-term system productivity. This technique, called permeate flow control, is recommended for all microfiltration separations, particularly when using membrane rated at 0.45 µm.

Post-Use Cleaning

Following is a general guideline for cleaning SepraPor® hollow fiber filters.

Reasons for Cleaning:

• Remove residual product to prevent possible cross-contamination
• Remove fouling materials to maintain and/or recover filtration efficiency
• Prevent microorganism growth and remove metabolites to maintain a sanitary system

An insufficiently cleaned filter will have reduced flux and shortened usable life. Using such filters may lead to extended manufacturing times and reduced processing capacity, resulting in process interruption and filter replacement.

Cleaning effectiveness may be influenced by process solutions, process conditions, cleaning chemicals, and cleaning methods. Different membranes may require different cleaning strategies, such as stronger or more concentrated cleaning chemicals, higher temperatures, longer cleaning durations, and higher cross flow rates. Due to different process requirements and fouling conditions, users should study and develop the most effective cleaning methods for their particular processes. For particularly difficult to clean processes, it may be most efficient to forego cleaning and begin each process with a new filter.

Key Factors for Cleaning

• Time: Typical cleaning durations are from 30 – 120 minutes; longer cleaning times generally lead to better cleaning results.
• Cleaning agent type and concentration: HFMs are typically cleaned with NaOH from 0.1 – 1.0 N. However, users should determine the most effective cleaning agent and the minimum effective concentration per cleaning time for their application due to differences in process conditions, contaminants, and cleanability.
• Temperature: Typical cleaning temperatures are between 25 °C – 50 °C; higher temperatures are usually more effective, especially for lipids and other oily contaminants, though care should be taken not to exceed the maximum operating temperature of the HFM.
• Cross flow rate: Higher cross flow rates produce better cleaning results. Carefully monitor inlet-, outlet-, and transmembrane pressures when cleaning at elevated cross flow rates.
• Water: It is recommended to use deionized water (DIW) or water for injection (WFI); poor quality water should not be used.
Cleaning Agents

Table 6: Recommended cleaning agents for various foulants of SepraPor® filters.

<table>
<thead>
<tr>
<th>Type</th>
<th>Agents</th>
<th>Foulant</th>
<th>Conditions</th>
</tr>
</thead>
</table>
| Alkalies | NaOH | Proteins, vaccines, bacterial cells, pyrogens, etc. | 0.1 – 0.5 N
20 °C – 50 °C
30 – 60 min. |
| | NaOH-NaOCl | Nucleic Acids | 0.1 – 0.5 N NaOH
100 – 300 ppm NaOCl
30 – 60 min. |
| Acids | HNO₃ | Nucleic Acids, inorganic, etc. | 0.1 N
20 °C – 50 °C
30 min. |
| | H₃PO₄ | | |
| | H₂SO₄ | | |
| Surfactants* | SDS | Precipitated proteins, lipids, oils, antifoams, lipopolysaccharides | 0.1%, pH 4 – 9
30 – 60 min. |
| | Triton X-100 | | |
| | Tween 80 | | |

*Cleaning with surfactants is commonly performed in industry. However, the end user is ultimately responsible to validate their cleaning procedure.

Common Cleaning Strategies

- 0.5 N NaOH for 30 min at room temperature
- 1 N NaOH for 120 min at 50 °C
- 0.5 N NaOH – 300 ppm NaOCl for 30 min at room temperature
- 0.5 N NaOH – 500 ppm NaOCl for 30 min at room temperature
- 0.5 N NaOH for 30 min at room temp then 0.5 N
- H₂SO₄ for 30 min at room temperature
- Double 0.5 N NaOH – 300 ppm NaOCl for 30 min at room temperature

Alcohols in high concentrations (>40%) should be avoided because PS membranes will swell when exposed to alcohols. Although reversible, the swelling may alter the rejection characteristics of PS membranes. Long exposure times in a swelled state and pressurization/operation under these conditions may affect integrity.

Evaluation of Cleaning Effectiveness

Determining the effectiveness of a cleaning protocol is usually done by water flux recovery (%), comparing the water flux rate of a filter after cleaning against its initial water flux rate:

\[
WF \text{ recovery} \% = \left(\frac{WF \text{ after cleaning}}{\text{Initial WF}} \right) \times 100
\]

Water flux recovery may vary widely (65% - 95%) after the first use, but subsequent recovery values should be near 90%. Lower recovery may indicate the need for cleaning method optimization. If cleaning has been optimized, membranes with low recovery should be replaced.

Although the most common assessment of cleaning efficiency, water flux is not the only criterion available. Certain applications may see low water flux recovery, but consistent sample flux.

Water flux is temperature sensitive, and should be normalized to 25 °C. See the “Measuring Clean Water Flux” in this document for more information.
Used Membrane Storage

Filters must be stored appropriately to prevent membranes from drying out or developing microbial growth. Typical storage solutions and conditions are listed below, and filters should be sanitized before next use to ensure cleaness. Note: Storage conditions are based on industry standards.

Table 7: Recommended SepraPor® storage conditions.

<table>
<thead>
<tr>
<th>Storage Solutions</th>
<th>Maximum Recommended Storage Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH (0.05 – 0.1 N)</td>
<td>< 6 months</td>
</tr>
<tr>
<td>NaOH (0.05 – 0.1 N) at 4 °C</td>
<td>< 1 year</td>
</tr>
</tbody>
</table>

Storage and Shelf Life

Meissner Filtration Products, Inc. manufactures a complete line of filter products and One-Touch® single use assemblies, which can be integrated with SepraPor® capsule filters. Assemblies are suitably bagged and boxed for shipping and may be stored in the original packaging in a clean dry area between 10 °C and 40 °C (50 °F to 100 °F). The following gives the minimum shelf life expectancies for SepraPor® products.

Filters

The SepraPor® filter has an expected shelf life greater than 5 years in the cartridge and capsule configurations. Filters may be used beyond their minimum expected shelf life if stored in original packaging and integrity tested prior to use and found to be within specification. Filter product age can be determined from the date of manufacture on the product label, or the original Certificate of Conformance.

Gamma irradiated filters have an expected shelf life of at least 2 years from the date of irradiation. Gamma irradiated capsules are distinguished with part numbers beginning with “XFG”.

Shelf life stability studies are ongoing for pre- and post-gamma irradiated SepraPor® filters.

Filters have labeling which identifies the product-specific manufacturing date.

Quality Assurance

Each SepraPor® hollow fiber capsule filter is supplied with a Certificate of Conformance. SepraPor® Products are manufactured and packaged in a cleanroom facility that meets or exceeds FDA Good Manufacturing Practice Standards. To ensure product reliability, Meissner's Quality Assurance staff continually audits the manufacturing process for conformance to its Quality Management System. Each SepraPor® hollow fiber capsule filter is integrity tested during manufacture and is clearly marked with filter type, lot number and serial number.
Cartridge Ordering Matrix Description

<table>
<thead>
<tr>
<th>XF</th>
<th>M</th>
<th>M20</th>
<th>C</th>
<th>4</th>
<th>12</th>
<th>AA</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Configuration</th>
<th>Retention Rating</th>
<th>Fiber Lumen (Nominal)</th>
<th>Cartridge Diameter</th>
<th>Flow Path Length</th>
<th>Housing Seal Configuration</th>
<th>O-ring Seal Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF = SepraPor® polysulfone hollow fiber membrane filter</td>
<td>M = Filter Cartridge</td>
<td>M10 = 0.1 μm</td>
<td>C = 1.0 mm</td>
<td>4 = 5.1 mm (2.0")</td>
<td>12 = 30 cm (12")</td>
<td>AA = Shell Interface Seal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M20 = 0.2 μm</td>
<td></td>
<td>5 = 7.6 mm (3.0")</td>
<td>24 = 60 cm (24")</td>
<td>S = Silicone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M40 = 0.45 μm</td>
<td></td>
<td>6 = 10.2 mm (4.0")</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 = 15 mm (5.9")</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Capsule Ordering Matrix Description

<table>
<thead>
<tr>
<th>Product</th>
<th>Capsule Option</th>
<th>Retention Rating</th>
<th>Fiber Lumen</th>
<th>Cartridge Diameter</th>
<th>Flow Path Length (Nominal)</th>
<th>Retentate Ports (Inlet/Outlets)</th>
<th>Permeate Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF = SepraPor® polysulfone hollow fiber membrane filter</td>
<td>C = Standard capsule (non-sterile)</td>
<td>M10 = 0.1 μm</td>
<td>C = 1.0 mm</td>
<td>12 = 30 cm (12")</td>
<td>77 = ¾" sanitary flange</td>
<td>11 = ¼" hose barb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G = Gamma irradiated capsule</td>
<td>M20 = 0.2 μm</td>
<td></td>
<td>24 = 60 cm (24")</td>
<td></td>
<td>00 = 1" sanitary flange</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M40 = 0.45 μm</td>
<td></td>
<td></td>
<td></td>
<td>1 = 1½" sanitary flange</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CC = ½" hose barb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FF = 1" sanitary flange</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HH = 2" sanitary flange</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00 = 1" sanitary flange</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FF = 1½" sanitary flange</td>
<td></td>
</tr>
</tbody>
</table>

* For custom sizes / options on retentate or permeate ports, consult factory.